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A general flexible program for computer experiments with dilute gases approaching 
equilibrium is described. The program uses the Alder-Wainwright algorithm between 
collisions, and solves the Newton equations for binary and multiple collisions, making 
use of the conservation laws in the binary case. The program may be used for both 
central and noncentral interactions, and time-irreversible or multiple-particle interactions 
can simply be added. Examples of results, for 100 particles in a 2-dimensional box and 
for 125 particles in a 3-dimensional box, are described, and the time symmetry of the 
calculation is checked and discussed. 

1. INTRODUCTION 

In the last fifteen years, the techniques of high speed computer experiments for 
studying the behavior of molecular and atomic systems has been extensively used 
[l]. The works in this field may be divided into two main groups. One group, 
represented, e.g., in the work of Rahman and collaborators [2] or in those of 
Vineyard and coworkers [3], consists of works in which all 6N differential equations 

dr,/dt = vi , 

dvJdt = Fi = c Fij, i = 1, 2,..., N. 
ifi 

(N is the number of particles, ri and vi the position and velocity of the i-th particle, 
Fi the force on this particle (the masses are taken as 1)) are simultaneously solved, 
with a fixed time step. In all these works, only binary interactions are considered, 
the force Fij being computed from a radially symmetric potential 

Fij = -VV(l ri - rj I). (2) 

The second approach, due to Alder and Wainwright [4], deals with systems of 
hard spheres. In these calculations, successive binary collision points are connected 
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by straight-line molecular trajectory segments. The veclocity changes at each 
collision are calculated simply from conservation laws, and no use of Newton’s 
equations (1) is needed. 

The first group of calculations has been very successful in investgations of dense 
matter behavior [2], and of lattice radiation damage [3]. The second has described 
beautifully the approach to equilibrium of dilute gases, when each particle interacts 
at most with one neighbor in a simplified binary collision. 

Clearly, the model of hard spheres, with or without an attractive square-well 
potential, is not realistic and very restrictive. The question of the approach to 
equilibrium of a gas is of great interest in many aspects, and a more detailed 
research on different factors which affect this approach might clarify many points. 
For example, the use of various realistic central potentials, such as the Lennard- 
Jones potential, instead of the hard sphere model, will make clear the effect of the 
specific form of the interaction on the approach to equilibrium. Other kinds of 
interaction which have not yet been used are those of noncentral, nonbinary and 
nonlocal forces. Most statistical theories use central local binary interactions, and 
find it difficult to include more general forces, although these exist in nature. 
Noncentral forces, such as the Stockmayer potential [5], are important for studying 
the behavior of polar molecules, e.g., H,O. Nonbinary forces, such as the 3-body 
Axilrod-Teller potential [6], are important for calculations related with the dynamics 
of noble gas atoms [7] and for nuclear matter problems [8]. Nonlocal forces, or 
equivalently, velocity dependent forces [9], appear, e.g., in connection with the 
pseudopotential in solid state physics [lo], or in relation with time reversal violating 
potentials [ll]. Some microscopically irreversible effects, such as in the neutral 
kaon decay [12] or in atomic inelastic collisions, may also have an important effect 
on the macroscopic behavior of the gas. 

Of course, a Rahman technique can be used to solve such problems, but the 
solution might not be very precise and would waste computer time due to the fact 
that in a dilute gas only very few particles are interacting at a given moment. 

Therefore, a flexible program to compute the approach to equilibrium of a 
dilute gas, with a general short-range interaction, has been written. This program 
combines the “hard sphere” Alder-Wainwright method [4], for the description 
of the molecular trajectories between collisions, with a realistic general solution of 
the equations of motion for the colliding particles. The program is very flexible; 
the type of interaction can easily be changed, and its effect may be studied.l 

1 After this work was completed, a work by H. W. Harrison and W. S. Schieve [13] appeared, 
in which 2-dimensional computer calculations for dilute gases with the Lennard-Jones potential 
are described. These authors combine the Alder-Wainwright and the Rahman techniques, for 
pair collisions (I thank Dr. Harrison for a private communication, clarifying this point). Still, 
it seems that our procedure for dealing with the pair collision, and the possibility for multiple 
collisions in three dimensions, have not yet been described in any published work. 
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Section 2 gives a general outline of the program. In Section 3, our version of the 
Alder-Wainwright algorithm for arranging the time steps is described. Section 4 
describes the method of calculating a binary collision, and Section 5 that of dealing 
with a multiple collision. Section 6 gives examples of results and a discussion of the 
precision of the calculation. Further examples are hoped to be discussed in future 
publications. 

2. DESCRIPTION OF THE PROGRAM 

The main parts of the program are as follows: 

2.1. Input 

The main input data are 

NX, NY, NZ = the dimensions of the initial lattice, 
a, b, c = the unit lengths of the lattice, 
Q,, , b, , cO = the distances of the walls from the lattice, 
uO = the magnitude of the initial velocity, 
dv = the velocity interval for calculating the velocity distribution, the 

H-function, etc., 
E, /3, etc. = the parameters of the binary potentials (e.g., in the Lennard- 

Jones case the potential is e[@/r)12 - @/r)6]), 
RMX = the cutoff radius of the potential. 

2.2. Equilibrium Distribution 

For comparison with the final results, the equilibrium Maxwell-Boltzmann 
distribution is calculated: 

n,,(u) = NX * NY. NZ 312 e-3/2W/v,)e~ 

2.3. Initial Conditions 

The particles can either be arranged on a cubic lattice: 

JW.l = a0 + (I - 1) a, I = 1, 2 ,..., NX, 

Y(N) = b, + (J - 1) b, J = 1, 2 ,..., NY, 

Z(N)=c,+(K- l)c, K = 1, 2 ,..., NZ, 

N=NZ.NY*(I-l)+NZ*(J--l)+K, (4) 

or randomly distributed in the box. 
The directions of the velocities, all of magnitude a0 , are randomly distributed. 

.581/10/z-12 
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2.4. Initial Arrangement of Time Steps 

For each particle, the shortest time interval after which it is going to collide 
either with another particle or with a wall of the box is recorded. The procedure of 
finding these time intervals will be described in Section 3. The time intervals are then 
arranged in increasing order, in the vector DTT(Z). The numbers of the particles 
which are going to collide at these times are recorded in the vector 17’(I), and the 
number of the particle or of the wall (the walls are given negative indices) with 
which particle N is going to collide is recorded in the vector U(N). 

2.5. output 

For chosen time intervals, and after each collision, the physical time, number of 
collisions, H-function, kinetic and potential total energies, etc., are printed. The 
velocity distribution and the detailed positions and velocities of all the particles 
may also be printed, or written on a file (or a magnetic tape) for future uses (e.g., 
the calculation of velocity correlations etc.) 

2.6. Main Part 

At the beginning of each time step, NN = ZT( 1) is recorded, and DT = DTT(l) 
is taken as the running time step (unless printing time is approaching). The vector 
DTT(I) is afterwards moved: 

DTT(Z) = DTT(I + 1) - DT, 

IT(I) = ZT(I + 1). (5) 

Now, a loop over all the particles is done. All particles which are not undergoing 
collisions are moved on straight lines: 

X(N) = X(N) + DT * VX(N), 

Y(N) = Y(N) + DT . VY(N), 

Z(N) = Z(N) + DT . VZ(N). (6) 

The vector II(N) contains information concerning the “state of collision” of 
each particle: If ZZ(N) = 0, the particle is not in the middle of any collision, and 
Eqs. (6) are used. If N < II(N) < NT (NT is the total number of particles), then 
particle N is undergoing a collision with particle II(N), and subroutine PAIR is 
used to calculate their final positions and velocities (see Section 4). If 
0 < II(N) < N, then particles N and 11(N) are undergoing a collision, and their 
final positions are velocities have already been calculated [when the loop was at 
particle II(N)]. 

If NT < II(N), then particle N interacts with more than one particle. To save 
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room in the memory, the numbers of these particles are stored in ZZ(N) in 
the form 

zz(N)=Nl+(l+N)N2+(1+N7)~N3+(1+NT)3~N4 (7) 

(no more than five particles per collision are allowed). The positions and velocities 
after the multiple collision are calculated by subroutine COL (Section 5). All N’s 
in ZZ(N) are larger than N, hence the collision is computed when the particle with 
smallest index N is approached in the loop. The ZZ(N)‘s of all other particles are 
equal to this first N, and the above rule for 0 < ZZ(N) < N applies here too. 

If after DT the collision is terminated, namely, the particles leave the range of 
each other’s force, the values of their ZZ(N)‘s are again set equal to zero. 

At the end of the main loop, the time intervals for the next collisions for all 
particles which were undergoing collisions are found (Section 3), and put in their 
proper places in the vector DTT(1). 

Now, the particle NN is separately treated: If it is going to collide in the next 
time with a particle (ZJ(NN) > 0), then the values of ZZ(NN) and of ZZ(ZJ(NN)) are 
properly set, so that ZZ of the lower index is set to include the higher index [Eq. (7)], 
and ZZ of the higher index is set equal to the lower index. If ZJ(NN) < 0, then 
particle NN has now approached the wall number -ZJ(NN), and the proper 
boundary conditions are applied. In the present version, we use rigid walls, e.g., 

VX(NN) = - VX(NN), (8) 

for a collision with a wall perpendicular to the x axis, but these can easily be 
changed to periodic boundary conditions. 

2.7. Error Exits 

At the end of each time steps, the value of total energy 

E=E,+v=&,~+~ 
i=l 

(9 

is compared with its former value. The time step is repeated if energy is not con- 
served within a given error. (The positions and velocities, etc., are stored at the 
beginning of the main loop, for this purpose). 

The time step is also repeated if subroutines PAIR or COL are entered with 
particles which are not in each other’s range of force. 

The run is stopped if the time step must be repeated more than once, or if the 
integration in subroutines PAIR or COL do not converge. 
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3. ARRANGEMENT OF TIME STEPS 

This part of the calculation is used at the beginning of a run (Section 2.4) and 
after each time step (for colliding particles, Section 2.6). 

The time interval for the particle N to approach the wall X = 0, if VX(N) < 0, 
is 

At = -X(N)/VX(N), (10) 

and to approach the opposite wall, X = A, if VX(N) > 0, 

At = (A - X(N))/VX(N) (A = (NX - 1) a + 2a,). (11) 

Similar calculations give the minimal time interval for the particle to approach any 
wall. 

The main part of this routine is a loop on all other particles, except N. The 
procedure is similar to that of Alder and Wainwright [4], but with a few significant 
differences: For each pair of particles n and m we define 

(12) 

(13) 

(14) 

(1% 

(16) 

(17) 

The flow chart in Fig. 1 describes the logic of checking the state of collision of 
these two particles: If C,, , < 0, then n and m are inside the range of each other’s 
force, and a collision must be undergoing. The values of I.(N) and II(M) are thus 
checked and reset if necessary (See Section 2.6). If C’,, > 0, B,, is checked. If 
B,,,,, < 0 then the particles are approaching each other, and will reach the range 
RMX after a time interval At if the equation 

(rn, + v,At)2 = RMX2 (18) 

has a real positive solution, given by Eq. (17). 
In all other cases, no collision occurs. 
After finding the minimal value of At for the particle N, this time interval is put 

in its proper place in the vector DTT(I), N is put in the same place in IT(Z), and the 
event (collision with M or with a wall) is recorded in U(N). 
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Continue 

ii 

FIG. 1. How chart for collision calcdation. 

4. SUBROUTINE PAIR 

This subroutine is used to calculate the new positions and velocities of two 
colliding particles, after a given time interval DT. 

The simplest method of solution is, of course, to solve the 12 differential Eqs. (1) 
for the six coordinates and six velocities of the two particles. This method is used 
by Rahman [2] for the many-particle case. Clearly, this procedure is both time 
consuming and not very accurate, due to the large number of equations. Obviously, 
this subroutine is the most used in the program, and therefore special attention 
must be given to any possible reduction in the time of calculations in it. The 
simplest way to reduce the number of differential equations to be solved is to use 
the conservation laws which hold for the binary collision. In all cases with no 



348 AHARONY 

external forces, the total linear momentum is conserved, and therefore the center 
of mass moves on a straight line. Defining 

R = Hr, + r,), v = B(Vl + VA, (19) 

we have 

R(W)= R(0) + DT. V (20) 

(we take all masses equal to 1). The number of differential equations is thus 
reduced to six, in the relative position and velocity 

r = rl - r, , v = Vl - v2 : (21) 

drjdt = v, dvjdt = 2F, (22) 

with the force F derivable from the given potential. 
In most cases, the center of mass energy E and the relative angular momentum L 

are also conserved. These conservation laws enable us to further reduce the number 
of differential equations to 2, in the distance between the particles r and the azi- 
muthal angle around L, 8. Especially, for a central potential V(r) we have [14] 

dr/dt = f2[E - V(r) - (f2/r2)]lj2 (23) 

deldt = 21/F, (24) 

where I is the magnitude of L, 

(25) 

In the plane orthogonal to L we define two orthogonal unit vectors 

i = r/r, j = [Pv - (r . v) r]/j r2v - (r . v) r / (26) 

(the values of r and v are taken at t = 0). The initial value of 0 is taken as zero. 
The final values of r and of v are then given by 

r(DT) = r(DT)[cos e(DT) . i + sin e(DT) . j], 
(27) 

VW) = r(DT) f(DT). r(DT) + d(DT) . r(DT) . [-sin B(DT)i + cos B(DT)j] 

(+ and 0 are given by (23) and (24)). 
The values of rl , r2 , vr and v2 are then found by 

rl = R + +r, r2 = R - $r, 

Vl = v + Qv, v-2 = v - iv. 
(28) 
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Although Eq. (23) has been written for a central potential, it may be extended to 
more general potentials which conserve angular momentum. In all the cases where 
V may be written as a function of I and of + (4 may be replaced using I), t of Eq. (23) 
may be replaced by a solution of the equation 

E = it” + (P/9) + V(r, i.) (29) 
in /. 

Obviously, there is an ambiguity in the sign in Eq. (23). This sign is found as 
follows: The initial sign is equal to that of (r(O) . v(0)). This sign is used until the 
argument (E - V - 12/r2) receives a negative value. At this point, the value of r 
corresponding to the zero value of the above argument (closest approach of the 
particles if the initial sign is negative) is found by interpolation, and the sign in 
Eq. (23) is changed. If the time of this closest approach (which is also found by 
interpolation) is shorter than 4 . DT, then the solution of the differential equations 
is stopped, the values of r, 8 and t are set at r(O), 20 and 2t (using the symmetry 
property of the motion), and the solution is continued from this point. If not, the 
solution is continued. If the value of r at any time t becomes larger than RMX, the 
solution is stopped, and the final values of r and v are obtained by 

r(DT) = r(t) + v(t) - (DT - t) 

v(DT) = v(t). 
(30) 

Many procedures may be used for the actual solution of Eqs. (23)-(24). The 
preliminary results presented in Section 6 have been obtained using the Runge- 
Kutta-Gill method, with 

At = er,,Jtmax , (31) 

where rm. is a typical radius (e.g., RMX), i,,, is the maximum value of 1’, of the 
order 

( 
12 

1 
112 

~max = 2 E - Vmin - ~ 
RMX2 

and E is of the order 10-2. This method has proved to be quite satisfactory, especially 
with the high demands for accuracy which we discuss in Section 6. 

For less restrictive demands of accuracy, other difference schemes may be used. 
Special attention must be paid to the time reversibility of the scheme, since 
we do not want any irreversibility property of the system due to numerical 
causes [15]. 

It should be noted that Eq. (23) does not depend on 8, and therefore may be 
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solved separately, with higher accuracy restrictions. After obtaining the values of 
r(tJ, we may solve (24) simply by any integration procedure, e.g., 

Wi+d - w = 4&+1 - b) (& + 
1 

‘(&+1)” 1 (33) 

(note that this scheme is time reversible!) 
A possible procedure of finding r(tJ is the following: Eq. (23) may be written in 

the form 

and hence 

dt = +dr/2 (E - V(r) - $-)l”, (34) 

ti+l - ti = ft(ri+l - ri) 
t 

1 
[E - V(ri) - P/ria]l’z + [E - V(ri+l) L P/(r~+I)11/2 ’ 

(35) 
ri may be changed in equal steps, chosen properly, and ti may be calculated through 
Eq. (35). This way, no iterations are necessary. After finding ti(ri), Eq. (33) may be 
used to calculate the values of e(ti). All other details of the procedure (choosing 
the sign of dr according to the proper sign in Eq. (34), stopping the calculation at 
the point of closest approach, etc.) remain unchanged. 

Special attention must be given to the choice of ri near the point of closest 
approach, at which the denominator of Eq. (34) vanishes, If for some value of 
i, [E - V(ri+J - l”/ri2,J becomes negative, smaller values of dr are used until the 
absolute value of this expression becomes small enough, and then the motion is 
reversed. This usually wastes some computation time if high accuracy is demanded. 
For usual purposes, however (without the high demands mentioned in Section 6), 
this procedure is much less time-consuming than the Rung*Kutta-Gill procedure. 
For our purposes, however, the Runge-Kutta proved to be better. 

5. SUBROUTINE COL 

This subroutine is used to calculate the new positions and velocities of more than 
two colliding particles, after a given time interval DT. 

Since the main purpose of the program is to deal with dilute gases, multiple 
collisions are relatively rare (although statistically they may occur, and the program 
must be prepared to calculate them). Therefore, the question of the length of run- 
time is less important. Also, the actual usage of the conservation laws is more 
difficult, and the reduction in the number of differential equations to be obtained by 
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it is less impressive. Therefore, we preferred here to solve the 6n Eqs. (1) for the n 
colliding particles, and to do this by the simplest method, namely, 

rfew = ri Old + “Sld . At, 

new 
Vi = yyld + F;ld . At, (36) 

with the accuracy obtained by taking dt small enough (e.g., of the order lo-%/vO 
in our units). After each step dt, the conservation of energy is checked, and the 
time step is repeated, with a smaller value of d t, if energy is not conserved within a 
given error. 

Of course, if multiple collisions are expected to occur frequently, or if multiple- 
particle interactions (e.g., three-body forces) are to be investigated, this scheme 
may easily be modified, e.g., to the Rahman scheme [2] or to an extension of our 
scheme (Section 4) using some conservation laws. This is being done in a new 
version of the program. 

6. RESULTS AND DISCUSSION 

Our main purpose in writing the present program has been to investigate the 
irreversible approach of a system of particles to equilibrium, and to study the 
effects of several factors on the H-function during this approach. Therefore, the 
most important property the program must have is time reversal symmetry of the 
numerical procedure, as already discussed in length by Buneman [15]. Even in 
programs with dilute gases of hard spheres, where it is much easier to control the 
accuracy, irreversible effects due to numerical reasons have been observed [16, 171. 

Therefore, the best check for the accuracy of the program has been chosen as the 
calculation of the “antikinetic” evolution of the gas, as discussed by Balescu [18] 
and by Orban and Bellemans [ 171: After a time t, , all velocities are reversed, and 
the backwards evolution of the gas to its initial state, with the H-function increasing, 
is followed. 

Naturally, if t, is large enough, the gas will not return to its exact initial state. 
Still, if this to is not much smaller than the time at which the number of collisions 
is of the order of the number of particles, the program may be considered appro- 
priate for our type of investigations. 

As preliminary results, mainly to show the possibilities, we present here two 
cases. In Fig. 2, the Boltzmann H-function for 100 particles, in a two-dimensional 
box, with the interaction potential 

V(r) = e-rlB, p = 0.01, RMX=5/3 (36) 
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FIG. 2. The Boltzmann H-function for 100 particles in a 2-dimensional box, with an ex 
ponential potential and with the velocities inverted after 5 time units. 

H 
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FIG. 3. The Boltzmann H-function for 125 particles in a 3-dimensional box, with a Lennard- 
Jones potential and with the velocities inverted after 5 time-units. 

and with a = b = 1, v0 = 1 (the potential is set equal to zero at RMX, and 
reduced linearly to this value from the point RMXX = 0.98 * RMX). The time to 
of the velocity inversion has been chosen as to = 5 in our units, corresponding to 
18 binary collisions (no multiple collisions). As may be seen from the figure, the 
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H-function retraces its path to its initial value at 2t, . The mean velocity returns to 
its initial value (1) to within 1O-s, and the particles return to their initial lattice 
points to within 10-4. 

Figure 3 presents another example. Here, 125 particles were run in a 3-dimen- 
sional box, with a Lennard-Jones potential, 

W) = 4@/~)‘” - WY-l> E = 100, p = 0.1, RMX = 2.25p. (37) 

Again, the velocities are inverted after t, = 5 units, corresponding here to 25 
collisions, and the results are obvious from the figure. 

The program was run on a CDC-6600 computer, and the runtime has been of the 
order of 1.5 sets/collision in the 2-dimensional case and 7secs/collision in the 3- 
dimensional case. 

These results seem quite satisfactory, and the program is thus ready for the 
comparison of different types of potentials, for the use of noncentral or time- 
irreversible potentials, etc. These will be described in future publications. A listing 
of the program, for similar purposes, may be obtained from the author. 
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